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An algorithm for evaluation of the crystallographic FFT for 67 crystallographic

space groups is presented. The symmetry is reduced in such a way that it is

enough to calculate P1 FFT in the asymmetric unit only and then, in a

computationally simpler step, recover the ®nal result. The algorithm yields the

maximal symmetry reduction for every space group considered. For the central

step in the calculation consisting of general P1 FFTs, any generic fast Fourier

subroutine can be used. The approach developed in this paper is an extension of

the scheme derived for p3-symmetric data [Rowicka, Kudlicki & Otwinowski

(2002). Acta Cryst. A58, 574±579]. Algorithms described here will also be used in

our forthcoming papers [Rowicka, Kudlicki & Otwinowski (2003). Acta Cryst

A59, 183±192; Rowicka, Kudlicki & Otwinowski (2003), in preparation], where

more complicated groups will be considered.

1. Introduction

Taking full advantage of crystallographic symmetries in

computation of the Fourier transform would yield much more

ef®cient fast Fourier transform (FFT) routines for crystal-

lographic data processing. However, there has been no general

space-group-ef®cient implementation of fast Fourier trans-

form so far. Such algorithms should operate only in the

asymmetric unit and should have speeds comparable to P1

FFT transforms of the same amount of data. This will be called

a maximal symmetry reduction.

This problem has already been partially solved by Ten Eyck

(1973). Subsequently, it has attracted lots of attention and

more than 20 research papers have been devoted to the issue.

In particular, an elegant approach has been proposed by

Bricogne (1993), but without a prescription how to design

algorithms.

Our work has resulted in a set of easy-to-implement

algorithms for all 230 crystallographic groups. For every one of

them, we can achieve maximal symmetry reduction. More-

over, at all times only a region of memory corresponding to

the asymmetric unit has to be allocated.

Recently, we have presented an explicit scheme for the p3

symmetry group (Rowicka et al., 2002). The present paper is

the second in a series of articles describing our approach. Here

we deal with 67 crystallographic groups for which it is possible

to reduce crystallographic symmetry in one step. For each of

these groups, we ®nd a computational grid without points in

special positions. It means that in such a computational grid

data points do not lie on symmetry elements (such as rotation

axes or mirror planes). Implementation of this algorithm

already exists and yields expected gains in speed and reduc-

tion in memory usage.

Our approach differs from that of Ten Eyck. We do not

factorize the one-dimensional Fourier transform, nor do

symmetry elements of order 2 play a special role in our

scheme. This makes our algorithm versatile and easy to

combine with other algorithms we developed. The approach

we use in this paper is a generalization of an approach

proposed by Bricogne, (1993). However, our forthcoming

papers (Rowicka et al., 2003a,b) (where we will discuss all

crystallographic groups not covered here) will be very

different in spirit.

We based our approach on the Cooley±Tukey decomposi-

tion (Cooley & Tukey, 1965), which has the advantage of a

simple geometric interpretation, unlike the widely discussed

Winograd scheme (Auslander & Shenefelt, 1987; Auslander et

al., 1988; Bricogne & Tolimieri, 1990; An et al., 1992; Bricogne,

1993). In the Cooley±Tukey algorithm, data are divided into

subsets consisting of points regularly distributed in space.

Regular spacing has an additional implementation advantage

of an easy to optimize memory access pattern. Another

advantage of the approach presented here and in our other

papers (Rowicka et al., 2002, 2003a) over the Winograd

scheme is that our algorithms generally do not depend on the

prime-factor decomposition of the grid size. In the Winograd-

based approach, each group and each grid size leads to a

different algorithm. We will also cope with the limited sensi-

tivity to the prime-factor decomposition of the grid size in the

last portion of algorithms, which will be presented in Rowicka

et al. (2003b).

The paper is organized as follows. In x2, we introduce

mathematical notions and notation we will use later on. In x3,

the symmetry-reduction formula is derived. Following that, in

x4, we explain by examples how the symmetry-reduction

formula works. The purpose of these examples is twofold: they



are intended to provide insight into how our algorithm works

in practice; reading them will also aid in understanding the

formalism introduced in xx2 and 3. In x5, we discuss require-

ments, limitations and future development and application

of our algorithms. In Appendix A, we provide a detailed

description of the algorithm and requirements on the grid size

for speci®c crystallographic groups.

2. Mathematical notions and notation

Throughout this paper, we will follow the spirit of the modern

mathematical approach of Bricogne (1993), we will also use a

similar notation. Let Z denote the set of all integers and Z3

denote Z� Z� Z, where� is the Cartesian product. Matrices

and vectors will be written in bold type.

Our goal is to compute the discrete Fourier transform of a

periodic function f de®ned on Z3. Such a function will have

the periodicity of the underlying crystal structure. The crystal

periodicity can be described in many ways, for example by

listing three primitive translation vectors. These vectors will be

denoted by a1; a2; a3. In the standard basis of Z3, consisting of

basis vectors e1, e2 and e3:

e1 �
1

0

0

24 35; e2 �
0

1

0

24 35; e3 �
0

0

1

24 35;
the primitive translation vectors a1; a2; a3 can be written as

a1 � a11e1 � a21e2 � a31e3

a2 � a12e1 � a22e2 � a32e3

a3 � a13e1 � a23e2 � a33e3;

where all aij are integer. Let A denote the matrix whose

columns are vectors a1, a2 and a3:

A �
a11 a12 a13

a21 a22 a23

a31 a32 a33

24 35:
Note that, since the primitive translation vectors a1, a2 and a3

are linearly independent, it follows that the matrix A is

invertible (that is, its determinant is not equal to zero:

det A 6� 0).

Periodicity of the crystal can be also encoded by lattice �
de®ned as a set of linear combinations of primitive translation

vectors, with integer coef®cients:

� � fk : k � m1a1 �m2a2 �m3a3; m1;m2;m3 2 Zg;
or in shorthand notation

� � AZ3:

Following Bricogne (1993), we will call A the period matrix of

the crystal and � its period lattice. Lattice types encountered

in this paper are graphically depicted in Fig. 1, the period

lattice � is coloured blue.

The periodicity of the function f can be encoded by the

period lattice �, as follows:

f �x� t� � f �x� for t 2 � and x 2 Z3:

Observe that the function f has the same values in points x and

y if xÿ y 2 �. To build a formalism convenient for describing

such periodic functions, we will use the notion of an equiva-

lence relation, which naturally arises in crystallography. Let X

be a set and let x; y 2 X . We say that x is in relation R with y

and we write xRy whenever a certain condition is ful®lled.

This condition can have a fairly general nature. A relation is

called an equivalence relation if it is re¯exive (xRx for every

x 2 X), symmetric (if xRy then yRx) and transitive (if xRy

and yRz then xRz). Equivalence relations are of great

importance to us, since they induce a decomposition of a set,

on which they are de®ned, into equivalence classes. The

equivalence class of an element x 2 X with respect to relation

R is a set of all elements y 2 X such that y is in relationR with

x. It will be denoted by �x�R:

�x�R � fy 2 X : yRxg:
A useful example of an equivalence relation is given by

yR�x, yÿ x 2 �:

That means that x and y are in the relation R� if and only if

they have the same crystallographic coordinates. The equiva-

lence class of x will be

�x�� � fy 2 Z3 : yÿ x 2 �g:
In other words, the equivalence class of a point x is the set of

all points that are related to x by a combination of primitive

translations, with integer coef®cients. For example, in frac-

tional coordinates (that is if A is an identity matrix), the

equivalence class with respect to the relation R� of the point

�0; 0; 0� is the set of all points with integer coordinates.

Generally, in fractional coordinates, the equivalence class of

the point �x; y; z� consists of all points �~x; ~y; ~z� such that

fractional parts of x, y and z equal those of ~x, ~y and ~z,

respectively. Another useful notion will be that of a quotient

space. The quotient space of a vector space X by a vector

space Y is a set of all equivalence classes of the elements of X

with respect to the relation RY , de®ned by

x1RY x2 , x1 ÿ x2 2 Y;

for x1; x2 2 X. Such a quotient is a vector space and it is

denoted by X=Y. In this article, we deal with the quotient

space of Z3 by � (by de®nition, the lattice � is a vector space,

too):

Z3=� � f�x�� : x 2 Z3g:
One can think of this quotient space as a unit cell, with one

difference: every point from Z3=� represents an in®nite

number of points related by lattice translations. In fractional

coordinates, this quotient space is a set of representatives of all

points with coordinates greater than or equal to zero and

smaller than 1 (fractional parts of real numbers). One of the

reasons why equivalence classes are very useful is that they are

invariant under lattice translations. This clari®es the picture

and allows us to focus on meaningful symmetry operations.

More detailed examples will be discussed later on, when
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application of our algorithm to the speci®c crystallographic

groups will be presented.

The notion of a quotient space allows us to describe peri-

odicity conditions in a very convenient way. Instead of viewing

f as a �-periodic function, it can be equivalently considered as

de®ned on the set of the equivalence classes, Z3=�. Let us

introduce the notation

ÿ � Z3=AZ3 � Z3=� �1�
and

ÿ� � Z3=ATZ3;

where AT denotes the transposition of the matrix A. The

space ÿ� is a space dual to ÿ. Its elements are covectors, that is

objects dual to vectors. Covectors will be also printed in bold

type and they will be, when there is no risk of confusion, also

called vectors. However, covectors will be usually depicted as

`horizontal' vectors. Let h 2 ÿ�. Then,

h � h1 h2 h3

� �
:

Covectors can also be expressed using a standard dual basis e�1,

e�2 , e�3 :

h � h1e�1 � h2e�2 � h3e�3;

where

e�1 � 1 0 0
� �

; e�2 � 0 1 0
� �

; e�3 � 0 0 1
� �

:

The scalar product is always de®ned between a covector and a

vector. For example, the scalar products of a basis covector

and a basis vector is

e�i � ej � �ij;

where �ij is the Kronecker delta:

�ij � 0 for i 6� j

1 for i � j:

�
Consequently, the scalar product of a covector h and a vector x

expressed in standard bases reads

h � x � �h1e�1 � h2e�2 � h3e�3� � �x1e1 � x2e2 � x3e3�
� h1x1 � h2x2 � h3x3

or

h � x � h1 h2 h3

� � x1

x2

x3

24 35 � h1x1 � h2x2 � h3x3:

We will use a shorthand notation eA�h; x� for a coef®cient

(also called `twiddle factor') that will occur frequently in

considered formulae:

eA h; x� � � exp�ÿ2�ih �Aÿ1x�:
This symbol has the following properties:

eA g� h; x� � � eA g; x� �eA h; x� �
eA h; x� y� � � eA h; x� �eA h; y� �

for any g; h 2 ÿ� and x; y 2 ÿ. Moreover,

eA h;Ax� � � 1 for any h 2 ÿ� and x 2 ÿ: �2�
Let f be a complex-valued function on ÿ, where ÿ is given by

(1). The Fourier transform of function f will be denoted by F

and for any h 2 ÿ� de®ned by

F�h� � P
x2ÿ

f �x�eA h; x� �: �3�

For simplicity, in the above formula, we have omitted the

normalization constant 1=jdet Aj.

2.1. Multidimensional Cooley±Tukey factorization

Assume that A0 and A1 are matrices with integer entries,

such that

A � A0A1: �4�
Let us de®ne

X0 � Z3=A0Z
3 and X1 � Z3=A1Z

3:

Observe that every element x 2 ÿ can be expressed uniquely

as

x � x0 �A0x1; �5�

Figure 1
Lattices used in crystallographic Fourier transform calculations. For

simplicity, we depict an example in two dimensions. The standard lattice

Z2 is coloured black. The period lattice � is spanned in this case by the

vectors a1 � 12
0

� �
and a2 � 0

10

� �
and it is coloured blue. The asymmetric

lattice A0Z
2 is spanned here by vectors 4

0

� �
and 0

2

� �
and it is coloured red.

Figure 2
Decomposition (5) in the real space. Here, A � 12 0

0 10

� �
and A0 � 4 0

0 2

� �
. The

vector x � 7
7

� �
is represented as 3

1

� �� 4 0
0 2

� �
1
3

� �
, that is x0 � 3

1

� �
and x1 � 1

3

� �
.



where x0 2 X0 and x1 2 X1. An example of such a decom-

position (for clarity again in two dimensions) is illustrated in

Fig. 2. Decompositions of this type are also common in real

life, for example, instead of saying `I am 75 inches tall', one

would rather say `I am 6 feet 3 inches tall' etc.

Analogously, let us de®ne

X�0 � Z3=AT
0 Z3 and X�1 � Z3=AT

1Z3:

Then, in the reciprocal space there is a similar unique

decomposition for every h 2 ÿ�:

h � h1 �AT
1 h0; �6�

where h0 2 X�0 and h1 2 X�1 (see Fig. 3).

We introduce a shorthand notation

F�h0; h1� � F�h1 �AT
1 h0� � F�h�:

Let us insert the decomposition of h given by equation (6) into

equation (3):

F�h0; h1� �
P

x 2 ÿ

f �x�eA�AT
1 h0; x�eA�h1; x�:

Using the decomposition of x, given by equation (5), we obtain

eA�AT
1 h0; x� � eA�AT

1 h0; x0�eA�AT
1 h0;A0x1�:

Since eA�AT
1 h0;A0x1� � eA�h0;Ax1�, we can skip the last

factor because (2) implies eA�h0;Ax1� � 1. It follows that

F�h0; h1� �
P

x 2 ÿ

f �x�eA�AT
1 h0; x0�eA�h1; x�

or

F�h� � P
x02X0

eA�AT
1 h0; x0�

P
x12X1

f �x�eA�h1; x�: �7�

The above formula is the well known multidimensional

Cooley±Tukey factorization, here we use it in the form

presented by Bricogne (1993). The main idea of this decom-

position is to replace the Fourier transform of jdet Aj points

with jdet A1j Fourier transforms of jdet A0j points each. How

the Cooley±Tukey decomposition can be combined with the

underlying crystallographic symmetry will be shown in x3.

2.2. Crystallographic group action

Let G denote the crystallographic space group. All the

crystallographic space groups have an in®nite number of

elements (Bricogne, 1993), since they contain all linear

combinations of primitive translations, with integer coef®-

cients. As we remarked while discussing equivalency classes,

this is not a desirable feature for our purpose, since we are not

interested in lattice translations. Therefore, we shall consider

quotient crystallographic groups (also called factor groups),

that is crystallographic space groups without lattice transla-

tions. To this end, we will recall the quotient group construc-

tion and then, in order to obtain the quotient group, we

`divide' the crystallographic group by a subgroup spanned by

lattice translations. Observe that the period lattice � with

addition of vectors as group operation is a subgroup of G. In

fact, � is even a normal subgroup of G. Thus, we can consider a

quotient group G � G=� obtained by dividing the crystal-

lographic group by its normal subgroup �. The group

operation on G is induced from G. It can be thought of as

`collapsing' the subgroup � to the identity operator. The

elements of G are the symmetry operators as listed in Inter-

national Tables for Crystallography (ITC) (Hahn, 1995). The

group operation on G is a usual symmetry-operator compo-

sition. We will call the resulting quotient group G a quotient

crystallographic group G. It may not be obvious that G=� is a

group. However, this becomes clear when one keeps in mind

that elements of G are not individual operators but their

equivalence classes. The equivalence relation here is that the

difference of two operators is an integer linear combination of

the primitive translations. Therefore, G de®ned in such a way

is a group. There are many advantages of using a quotient

crystallographic group instead of a usual crystallographic

space group. For example, since all space groups have an

in®nite number of elements, one cannot derive any useful

information from comparing the number of elements in these

groups. The number of elements of the quotient crystal-

lographic group is useful in many aspects, also it is a con-

venient measure of the redundancy of the data.

We represent the action of an element g 2 G in the real

space as follows:

Sg x� � � Rgx� tg; �8�

where x 2 ÿ. We will call Rg the rotational part of the

symmetry operator related to g. Since det Rg � �1, it follows

that Rg can be a proper (det Rg � 1) or an improper

(det Rg � ÿ1) rotation. We will call tg a (non-primitive)

translational part of the symmetry operator. We stress again

that, since x 2 ÿ � Z3=�, the symbol x in the formula above is

in fact the equivalence class �x��, that is a set of all elements

from Z3, which are equal to x modulo �. The action equation

(8) de®nes an action S# on a function f on space ÿ by

�S#
g f ��x� � f �Sÿ1

g �x�� � f �Rÿ1
g �xÿ tg��:

This action S# on the functions in the real space extends to the

action S� on their Fourier transforms in reciprocal space
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Figure 3
Decomposition (6) in the reciprocal space. Here, A and A0 are the same

as in Fig. 2. Hence, AT � 12 0
0 10

� �
and AT

1 � 3 0
0 5

� �
. Consequently, the vector

h � 7
8

� �
is represented as 1

3

� � � 3 0
0 5

� �
2
1

� �
, that is h1 � 1

3

� �
and h0 � 2

1

� �
.
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S�gF�h� � eA�h � tg�F�RT
g h�: �9�

3. Symmetry reduction

Now we will combine the multidimensional Cooley±Tukey

factorization with crystallographic symmetry. In this section,

we will derive a symmetry-reduction formula. This formula

will allow us to evaluate the Fourier transform in the whole

unit cell by computing P1 Fourier transform of the asymmetric

unit only. Then, in a computationally simpler step, the ®nal

result will be recovered. Of course, such algorithms have to be

group speci®c. Let A be a matrix describing the periodic

computational grid. Then jdet Aj equals the number of points

in the unit cell. Suppose that for the quotient crystallographic

group G there exist matrices A0 and A1 satisfying (4). Suppose

also that these matrices are such that the number of elements

of G, denoted by jGj, equals jdet A1j:
jGj � jdet A1j:

Let ÿ0 denote

ÿ0 � A0X1: �10�
The lattice ÿ0 is depicted in Fig. 1, where it is referred to as an

asymmetric lattice. Let f be any function on ÿ that respects the

crystallographic symmetry, that is such that

f �x� � f �Sgx� �11�
for any x 2 ÿ and g 2 G.

We will require that the following assumptions are satis®ed:

Assumption 1. Grid ÿ can be expressed as a sum of jGj
mutually disjoint sets Sgi

ÿ0, where gi 2 G, that is

Sg1
ÿ0 \ Sg2

ÿ0 � ; for g1 6� g2

and

ÿ � S
g2G

Sgÿ0: �12�

Then,

jÿj � jGjjÿ0j:

Assumption 2. For every g 2 G, we have:

Sg�ÿ0� � �tg�ÿ0
� fx 2 ÿ : x � c� tg and c 2 ÿ0g:

Assumption 3. Matrix A commutes with Rg for every g 2 G:

ARg � RgA:

We proceed to the derivation of the symmetry-reduction

formula. In what follows, ÿ0 plays the role of the asymmetric

unit. Assumption 1 means that any element of ÿ can be

obtained by some symmetric transformation of some element

of ÿ0. It follows that, for every x, there exist a c 2 ÿ0 and a

g 2 G such that

x � Sgc: �13�

From Assumption 2, it follows that for every x 2 ÿ there exists

g 2 G such that

x 2 �tg�ÿ0
:

Moreover, for every x 2 ÿ, by the decomposition (5) and since

A0x1 2 ÿ0, it follows that x0 belongs to the same equivalence

class as x, namely

x0 2 �tg�ÿ0
:

Now we can rewrite eA�AT
1 h0; x0� as follows:

eA�AT
1 h0; x0� � eA�AT

1 h0; tg � c� � eA�AT
1 h0; tg�eA�AT

1 h0; c�
and

eA�AT
1 h0; c� � eA�AT

1 h0;A0x1� � exp�ÿ2�ih0 �A1Aÿ1A0x1�
� 1:

Therefore,

eA�AT
1 h0; x0� � eA�AT

1 h0; tg � c� � eA�AT
1 h0; tg�:

After substituting (13) and the above into (7), we obtain

F�h� � P
x02X0

eA�AT
1 h0; tg�

P
c2ÿ0

f �Sgc�eA�h1; Sgc�:

By equation (11), the function f is invariant under the action

of g 2 G:

F�h� � P
x02X0

eA�AT
1 h0; tg�

P
c2ÿ0

f �c�eA�h1; Sgc�:

From formula (8), describing the action of the symmetry

operator in terms of its rotational and translational compo-

nents, we obtain

eA�h1; Sgc� � eA�h1; tg�eA�h1;Rgc�:
Assumption 3 implies that Aÿ1Rg � RgAÿ1. Hence,

eA�h1;Rgc� � exp�ÿ2�ih1 �Aÿ1Rgc�
� exp�ÿ2�iRT

g h1 �Aÿ1c�
� eA�RT

g h1; c�: �14�
From the formulae derived above and (14), it follows that

F�h� � P
g2G

eA�AT
1 h0; tg�eA�h1; tg�

P
c2ÿ0

f �c�eA�RT
g h1; c�:

Let us introduce the symbol Y�h1� as the Fourier transform of

data in the asymmetric unit ÿ0:

Y�h1� �
P

c2ÿ0

f �c�eA�h1; c�:

With this notation,

F�h� � P
g2G

eA�AT
1 h0; tg�eA�h1; tg�Y�RT

g h1�:

Let us introduce the notation

Z�h1; tg� � eA�h1; tg�Y�RT
g h1�:

Finally,

F�h1 �AT
1 h0� �

P
g2G

eA�AT
1 h0; tg�Z�h1; tg�: �15�



The above formula shows how to compute the Fourier trans-

form of the unit cell using only P1 Fourier transform of the

asymmetric unit (Y). This way one performs FFT on 1=jGj of

the starting number of points. This is the maximal possible

reduction as one cannot use fewer points than in the asym-

metric unit. We will show later on that such a symmetry

reduction is possible for a large number of space groups.

A similar reasoning, leading to the same ®nal formula (15),

has been performed by Bricogne (1993). However, he built it

on a more restrictive assumption that A, A0 and A1 all

commute with Rg for every g 2 G. Such a strict assumption is

not necessary and, what is more important, it cannot be

satis®ed for some of the most interesting cases [e.g. the p3

symmetry (Rowicka et al., 2002)].

3.1. Finding a FFT-friendly asymmetric unit

Formula (15) gives the desired symmetry reduction

provided that Assumptions 1±3 are ful®lled by the chosen grid

ÿ, symmetry operators from the considered group G and the

asymmetric unit ÿ0. To ®nd asymmetric units satisfying these

conditions is a non-trivial task. They do not exist for all the

space groups.

Algorithms for all the space groups for which it is practical

to apply formula (15) are presented below. The choice of an

appropriate coordinate system is a crucial step in our scheme.

To derive solutions, we work in a new coordinate system,

which we call a grid coordinate system. Let xc and x denote

coordinates of the same point in the crystallographic and grid

coordinate systems, respectively. Let A be a 3� 3 matrix with

integer entries and let b be a vector from R3. The trans-

formation between the grid coordinate system and the stan-

dard crystallographic coordinate systems is an af®ne

transformation

x � Axc � b: �16�

The matrix A here is the same matrix that described the period

lattice � and the grid ÿ [see equation (1)]. The vector b
corresponds to the shift of the origin of the coordinate system.

We will require b to be such that all our data points will have

integer coordinates (jdet Aj corresponds to the number of

data points in the unit cell). The transformation equation (16)

will be described later by giving A and b only.

By Assumption 3, A commutes with Rg for any g 2 G. Then,

the relation between the symmetry operator �Rc
g; tc

g� in the

crystallographic coordinate system and in the grid coordinate

system �Rg; tg� is the following:

Rg � Rc
g and tg � �Iÿ Rc

g�b�Atc
g:

As will be shown in the next section, the shift introduced by b

will induce phase shifts in formulae for symmetry operators in

the reciprocal space. We will compute the Fourier transform in

the grid coordinate system only.

4. Examples of algorithms

Particular complexities of the algorithm will now be illustrated

by a few examples. The examples given will cover all types of

algorithms that appear in Appendix A. The ®rst one is the p4

group. It is then followed by a primitive orthorhombic or

tetragonal space group. The example of p3 has already been

described in Rowicka et al. (2002). There, however, we strove

to avoid heavy mathematics. In the present paper, this

example is described in a different way, it introduces an issue

of a subgrid described by a non-diagonal matrix. We will also

sketch out the algorithm for the P�6 group.

4.1. Plane group p4

This class of algorithms is denoted by 2x2y in Appendix A.

The plane group p4 is the simplest plane group with a fourfold

symmetry axis. The symmetry operators in the crystallographic

coordinates are x; y and ÿx;ÿy and ÿy; x and y;ÿx.

In this case, the grid coordinate system is described by

A � 2N 0

0 2N

� �
and b � ÿ 1

2

ÿ 1
2

� �
;

where N is a positive integer related to the number of points in

the unit cell. Let

A0 � 2 0

0 2

� �
and A1 � N 0

0 N

� �
:

Observe that A � A0A1. The grid ÿ, de®ned as ÿ � Z2=AZ2,

has in this case the form

ÿ � x

y

� �� �
A

: x; y 2 f0; 1; 2; . . . ; 2N ÿ 1g
� �

:

The subspace X0 � Z2=A0Z
2 consists of four vectors:

X0 � 0

0

� �� �
A0

;
1

0

� �� �
A0

;
0

1

� �� �
A0

;
1

1

� �� �
A0

( )
:

Here, 0
0

� �� �
A0

denotes an equivalence class of the vector 0
0

� �
,

de®ned as

0

0

� �� �
A0

� x 2 ÿ : x � 2 0

0 2

� �
n

m

� �
� 2n

2m

� �
; n;m 2 Z

� �
:

It means that this equivalence class consists of these elements

of ÿ whose x and y coordinates are both even. By analogy,

1

0

� �� �
A0

� x 2 ÿ : x � 2 0

0 2

� �
n

m

� �
� 1

0

� �
� 2n� 1

2m

� �
; n;m 2 Z

� �
:

All elements of this equivalence class have their x coordinate

odd and y coordinate even. The other two equivalence classes

contain points with x coordinate even and y coordinate odd,

and with both x and y coordinates odd, respectively.

On the other hand,

X1 � Z2=A1Z2

� 0

0

� �� �
A1

;
0

1

� �� �
A1

; . . . ;
N ÿ 1

N ÿ 2

� �� �
A1

;
N ÿ 1

N ÿ 1

� �� �
A1

( )
:
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Here, the equivalence classes are taken with respect to a

different relation. For example, if N> 7,

3

7

� �� �
A1

� x 2 ÿ : x � N 0

0 N

� �
n

m

� �
� 3

7

� �
� nN � 3

mN � 7

� �
; n;m 2 Z

� �
:

Since x is also an equivalence class itself (its coordinates are

understood to be modulo 2N), then there are only four

elements in this equivalence class:

3

7

� �� �
A1

� 3

7

� �
;

3

N � 7

� �
;

N � 3

7

� �
;

N � 3

N � 7

� �� �
:

The number of elements of X1 is jdet Aj=jGj � �2N�2=4 � N2.

Every element x 2 ÿ has a unique decomposition

x � x0 � 2 0

0 2

� �
x1;

where x0 2 X0 and x1 2 X1. The asymmetric unit is

ÿ0 � A0X1.

ÿ0 � 2 0

0 2

� �
�
�

� �
� 2�

2�

� �
:
�
�

� �
2 X1

� �
� 0

0

� �� �
A0

:

Observe that the number of points in the asymmetric unit ÿ0 is

N2 and it is the same as the number of points in X1.

The asymmetric unit ÿ0 is depicted in Fig. 4, it consists of

points lying in the centres of red squares. In this ®gure, the

black outline denotes a traditional choice of the unit cell.

Observe that, owing to the af®ne change of coordinate system,

there are no points in special positions, not only in the

asymmetric unit but also in the entire unit cell.

Let the clockwise rotation by 90� around the origin of the

crystallographic coordinate system be denoted by �. Then, in

the grid coordinate system,

R� � 0 1

ÿ1 0

� �
and t� � 0

ÿ1

� �
2 0

1

� �� �
A0

:

Let us check how the group G acts on the elements of ÿ0:

S�
2�
2�

� �� �
� 0 1

ÿ1 0

� �
2�
2�

� �
� 0

ÿ1

� �
� 2�
ÿ2� ÿ 1

� �
:

This means that the image under the action of symmetry group

element � on any point with both even coordinates belongs to

the equivalence class of vector t�:

S�
2�
2�

� �� �
� 2�
ÿ2� ÿ 1

� �
2 0

1

� �� �
A0

:

By analogy,

R�2 � ÿ1 0

0 ÿ1

� �
and t�2 � ÿ1

ÿ1

� �
2 1

1

� �� �
A0

:

Hence,

S�2

2�

2�

� �� �
� ÿ1 0

0 ÿ1

� �
2�

2�

� �
� ÿ1

ÿ1

� �
� ÿ2� ÿ 1

ÿ2�ÿ 1

� �
2 1

1

� �� �
A0

:

Finally,

R�3 � 0 ÿ1

1 0

� �
and t�3 � ÿ1

0

� �
2 1

0

� �� �
A0

:

Then,

S�3

2�

2�

� �� �
� 0 ÿ1

1 0

� �
2�

2�

� �
� ÿ1

0

� �
� ÿ2�ÿ 1

2�

� �
2 1

0

� �� �
A0

:

Let us prepare to apply the symmetry reduction formula (15).

Let h be any element of the reciprocal lattice ÿ�. ÿ� is de®ned

as follows:

ÿ� � Z2=ATZ2 � x

y

� �
: x; y 2 f0; 1; 2; . . . ; 2N ÿ 1g

� �
:

Every such h 2 ÿ� has a unique decomposition

Figure 4
Example of the 2x2y subgrid decomposition for p4 symmetry group and
for N � 8, that is for a 16� 16 grid ÿ. The asymmetric unit consists of
centres of red coloured squares. Equivalently, one can choose squares of
any other colour as an asymmetric unit as well.

Figure 5
The FFT-asymmetric unit in the reciprocal space for p4 symmetry is
coloured blue. The other colours denote its symmetric copies (up to the
phase shift). Here we use the same symbols for symmetry elements, but
actual formulae for symmetry operators in the reciprocal space differ
from those in the real space by phase shifts.



h � h1 � N 0

0 N

� �
h0;

where

h0 2 X�0 � Z2=AT
0 Z2

� 0

0

� �� �
A0

;
1

0

� �� �
A0

;
0

1

� �� �
A0

;
1

1

� �� �
A0

( )
and

h1 2 X�1 � Z2=AT
1 Z

2 � X1

� 0

0

� �� �
A1

;
0

1

� �� �
A1

; . . . ;
N ÿ 1

N ÿ 2

� �� �
A1

;
N ÿ 1

N ÿ 1

� �� �
A1

( )
:

Note that in this case A � AT and the same holds for A0 and

A1. By (9), the symmetry operator in the reciprocal space S�� in

this case is

S��F
h

k

� �� �
� eA

h

k

� �
;

0

ÿ1

� �� �
F

0 ÿ1

1 0

� �
h

k

� �� �
� exp ÿ2�i h k

� � 1=2N 0

0 1=2N

� �
0

ÿ1

� �� �
F
ÿk

h

� �� �
� exp

�ik

N

� �
F
ÿk

h

� �� �
:

Finally,

S��F�h; k� � exp��ik=N�F�ÿk; h�: �17�
By analogy,

S2�
� F�h; k� � exp ��i�h� k�=N�F�ÿh;ÿk�

S3�
� F�h; k� � exp��ih=N�F�k;ÿh�:

The phase shifts are due to the change of the origin of the

coordinate system (16). Since S�gF�h� � F�h� for every g 2 G,

it follows from (17) that

F�N;N� � ÿF�ÿN;N� � ÿF�N;N�;
so

F�N;N� � 0:

Analogously, using the symmetry operator S��2 , one can prove

that

F�N; 0� � 0 and F�0;N� � 0:

By the Shannon interpolation formula (Shannon, 1949),

values of the Fourier transform at points with modulus of h

above a maximum resolution are not linearly independent.

This phenomenon occurs for any grid choice. For our choice, it

causes zeros in the points �N;N�, �N; 0� and �0;N�.
A minimal set of points at which the Fourier transform must

be evaluated in order to retrieve the Fourier transform in the

whole unit cell will be called a FFT-asymmetric unit in the

reciprocal space. It might seem at ®rst glance that a good

choice of a FFT-asymmetric unit in reciprocal space is X�1 ,

which is dual to ÿ0, the asymmetric unit in the real space.

However, from (17), it follows that

S��F�h; 0� � F�0; h�:

Therefore, since we want to have only independent data in the

FFT-asymmetric unit in the reciprocal space, the good choice

of such a unit will be similar to X�1 , with points

0

1

� �� �
A1

;
0

2

� �� �
A1

; . . . ;
0

N ÿ 1

� �� �
A1

replaced by

N

1

� �� �
A1

;
N

2

� �� �
A1

; . . . ;
N

N ÿ 1

� �� �
A1

:

The FFT-asymmetric unit in the reciprocal space is depicted in

Fig. 5.

In practice, it is easier to compute Y in X�1 , and additionally

in the N above points. At the end, one can reconstruct the

Fourier transform of the whole unit cell using formula (15):

F�h1� � Z�h1; te� � Z�h1; t�� � Z�h1; t�2 � � Z�h1; t�3 �;
F�h1 � Ne1� � Z�h1; te� � Z�h1; t�� ÿ Z�h1; t�2 � ÿ Z�h1; t�3 �;
F�h1 � Ne2� � Z�h1; te� ÿ Z�h1; t�� ÿ Z�h1; t�2 � � Z�h1; t�3 �;

F�h1 � Ne1 � Ne2� � Z�h1; te� ÿ Z�h1; t�� � Z�h1; t�2 � ÿ Z�h1; t�3 �:

Hints and tips regarding implementation are discussed in

Rowicka et al. (2002), where the p3 symmetry group is used as

the example. The same decomposition as for the p4 group

works also for all other primitive orthorhombic groups with

four elements and also for some primitive four-element

tetragonal groups (for details see Appendix A). In particular,

the symmetry operators for the space group P4 are the same as

for the plane group p4, if one neglects their trivial action along

the z axis. Therefore, the symmetry-reduction algorithm for

the P4 symmetry group is exactly the same as for the p4

symmetry and is described by

4.2. Primitive orthorhombic or tetragonal groups

All primitive orthorhombic groups with eight elements and

some eight-element primitive tetragonal groups can be solved

by the algorithm described below. These algorithms will be

denoted by 2x2y2z in Appendix A

The transition to the grid coordinate system is described by

A and b � ÿ 1
2 �e1 � e2 � e3�:

The matrix A in this case is given by

Aorth �
2N 0 0

0 2M 0

0 0 2P

24 35 or Atetr �
2N 0 0

0 2N 0

0 0 2M

24 35;
where N, M and P are positive integers. The matrix Aorth is

used in the case of the orthorhombic space groups and the

matrix Atetr for tetragonal ones. The asymmetric unit in both

cases is described by the same matrix A0:
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A0 �
2 0 0

0 2 0

0 0 2

24 35:
The grid decomposition and the asymmetric unit is depicted in

Fig. 6.

A generalization from the 2x2y algorithm to the 2x2y2z
algorithm is straightforward. Basically, there is no funda-

mental difference between x, y and z directions in this case.

Examples of the the 2x2y2z algorithm are the Pmmm

group, which is orthorhombic, and the P4=m group, which is

tetragonal:

Since it is very similar to the 2x2y case, we can skip the

detailed explanation and proceed to the p3 symmetry case,

where new dif®culties arise.

4.3. The p3 symmetry

This algorithm will be denoted by 3(x+y) in Appendix A.

In the p3 symmetry case, the af®ne transformation from

the crystallographic coordinate system to the grid coordinate

system is given by

A � 3N
1 0

0 1

� �
and b � ÿ 1

3

2

1

� �
;

where N is a positive integer. Moreover,

A0 � 0 1

3 ÿ1

� �
and A1 � N N

3N 0

� �
:

The equivalence classes are de®ned as

0

0

� �� �
A0

� x 2 ÿ : x � 0 1

3 ÿ1

� �
n

m

� �
� m

3nÿm

� �
; n;m 2 Z

� �
:

In this equivalence class are all elements from the original grid

ÿ, whose sum of x and y coordinates is divisible by 3. By

analogy,

1

0

� �� �
A0

� x 2 ÿ : x � 0 1

3 ÿ1

� �
n

m

� �
� 1

0

� �
� m� 1

3nÿm

� �
; n;m 2 Z

� �
:

In this equivalence class are all elements from ÿ, whose sum of

x and y coordinates equals 1 modulo 3. The third equivalence

class contains points whose sum of x and y coordinates equals

2 modulo 3.

In this case,

X0 � Z2=A0Z
2 � 0

0

� �� �
A0

;
1

0

� �� �
A0

;
2

0

� �� �
A0

( )
:

On the other hand,

X1 � Z2=A1Z
2

� 0

0

� �� �
;

0

1

� �� �
; . . . ;

N ÿ 1

3N ÿ 2

� �� �
;

N ÿ 1

3N ÿ 1

� �� �� �
:

Moreover,

ÿ0 � A0X1

� 0 1

3 ÿ1

� �
�

�

� �
:
�

�

� �
2 Z2=A1Z

2

� �
� 0

0

� �� �
A0

:

Let the counterclockwise rotation by 120� around the origin of

the crystallographic coordinate system be denoted �. Then

G � fe; �; �2g. The symmetry operators are given in the grid

coordinates by

R� �
0 ÿ1

1 ÿ1

� �
and t� �

ÿ1

0

� �
2 2

0

� �� �
A0

�18�

R�2 � ÿ1 1

ÿ1 0

� �
and t�2 � ÿ1

ÿ1

� �
2 1

0

� �� �
A0

: �19�

Similarly, as in the case of p4 symmetry, one can check that

S��ÿ0� � 2

0

� �� �
A0

and S�2 �ÿ0� � 1

0

� �� �
A0

:

The subgrid ÿ0 (asymmetric unit) is depicted in Fig. 7 by the

blue rhombi. The green rhombi symbolize elements of S�2 �ÿ0�,
while yellow ones belong to S��ÿ0�. The symmetry operators in

Name Vector ÿb Matrix A Algorithm

Pmmm �12 ; 1
2 ;

1
2� 2jx; 2jy; 2jz 2x2y2z

P4=m �12 ; 1
2 ;

1
2� 2jx; 2jy:2jz 2x2y2z

Figure 7
Subgrid decomposition for p3 group, for N � 3. The data point locations
are symbolized by black dots. The asymmetric unit ÿ0 consists of data
points located in blue rhombi.

Figure 6
Example of 2x2y2z subgrid decomposition. The grid points are in the
centres of the coloured cubes. A set of coloured cubes of any colour is a
valid choice of an asymmetric unit.



the reciprocal space are given by (9). The ®nal symmetry-

reduction formulae are the following:

F�h1� � Z0�h1� � Z1�h1� � Z2�h1�
F�h1 � N�e�1 � e�2�� � Z0�h1� ÿ exp��i=3�Z1�h1� � exp�2�i=3�Z2�h1�

F�h1 � 2N�e�1 � e�2�� � Z0�h1� � exp�2�i=3�Z1�h1� ÿ exp��i=3�Z2�h1�:

This algorithm is depicted in Appendix A as

The case of the p3 symmetry with points in special positions

will be addressed in Rowicka et al. (2003b).

4.4. The P�6P�6 group

This kind of decomposition is represented in Appendix A as

This may seem to be a two-step algorithm, but actually

3(x+y) 2z denotes a one-step symmetry reduction, with matrix

A0 being the product of matrices describing 3(x+y) and 2z
decompositions:

A0 �
0 1 0

3 ÿ1 0

0 0 2

24 35:
We will not go into details, since they can be easily deduced

from the previously described cases.

5. Discussion

We have shown how to reduce, for 67 space groups, the

evaluation of the unit-cell FFT to calculating P1 FFT in the

asymmetric unit. Thus, one can pro®t from a substantial effort

made in developing very ef®cient P1 FFT routines (e.g. Frigo

& Johnson, 1998; Intel, 2001).

All crystallographic groups discussed in this paper share the

use of a non-standard asymmetric unit. Our asymmetric unit

retains the periodicity of the unit cell, so it is automatically

non-contiguous. This is not a problem as long as one performs

point operations (for example multiplying electron density by

a function) or convolutions (which are point operations in the

reciprocal space). However, in some applications, a contiguous

asymmetric unit is needed. A single permutation is then

necessary to change our asymmetric unit into any contiguous
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Table 1
Algorithms for crystallographic FFT with one-step symmetry reduction;
columns 1 and 2: crystallographic group number and symbol; column 3:
number of elements; column 4: origin shift; column 5: minimal divisibility
conditions for unit-cell sides; column 6: algorithm type (see x4).

ITC No. Name jGj Vector ÿb Matrix A Algorithm.

2 P�1 2 �12 ; 0; 0� 2jx 2x
3 P121 2 �12 ; 0; 0� 2jx 2x
3 alt P112 2 �12 ; 0; 0� 2jx 2x
4 P1211 2 �12 ; 0; 0� 2jx; 2jy 2x
4 alt P1121 2 �12 ; 0; 0� 2jx; 2jz 2x
6 P1m1 2 �0; 1

2 ; 0� 2jy 2y
7 P1c1 2 �0; 1

2 ; 0� 2jy; 2jz 2y
10 P12=m1 4 �12 ; 1

2 ; 0� 2jx; 2jy; 2jz 2x2y
11 P121=m1 4 �12 ; 1

2 ; 0� 2jx; 4jy 2x2y
13 P12=c1 4 �12 ; 1

2 ; 0� 2jx; 2jy; 2jz 2x2y
14 P121=c1 4 �0; 1

2 ;
1
2� 4jy; 4jz 2y2z

16 P222 4 �0; 1
2 ;

1
2� 2jy; 2jz 2y2z

17 P2221 4 �12 ; 0; 1
2� 2jx; 2jz 2x2z

18 P21212 4 �12 ; 1
2 ; 0� 4jx; 4jy 2x2y

18 alt P21212a 4 �12 ; 1
2 ; 0� 4jx; 2jy 2x2y

19 P212121 4 �12 ; 0; 1
2� 4jx; 2jy; 2jz 2x2z

25 Pmm2 4 �12 ; 1
2 ; 0� 2jx; 2jy 2x2y

26 Pmc21 4 �12 ; 1
2 ; 0� 2jx; 2jy; 2jz 2x2y

27 Pcc2 4 �12 ; 1
2 ; 0� 2jx; 2jy; 2jz 2x2y

28 Pma2 4 �12 ; 1
2 ; 0� 4jx; 2jy 2x2y

29 Pca21 4 �12 ; 1
2 ; 0� 4jx; 2jy; 2jz 2x2y

30 Pnc2 4 �12 ; 1
2 ; 0� 2jx; 4jy; 2jz 2x2y

31 Pmn21 4 �12 ; 1
2 ; 0� 2jx; 2jy; 2jz 2x2y

32 Pba2 4 �12 ; 1
2 ; 0� 4jx; 4jy 2x2y

33 Pna21 4 �12 ; 1
2 ; 0� 4jx; 4jy; 2jz 2x2y

34 Pnn2 4 �12 ; 1
2 ; 0� 4jx; 4jy; 2jz 2x2y

47 Pmmm 8 �12 ; 1
2 ;

1
2� 2jx; 2jy; 2jz 2x2y2z

48 Pnnn 8 �12 ; 1
2 ;

1
2� 4jx; 4jy; 4jz 2x2y2z

49 Pccm 8 �12 ; 1
2 ;

1
2� 2jx; 2jy; 4jz 2x2y2z

50 Pban 8 �12 ; 1
2 ;

1
2� 4jx; 4jy; 2jz 2x2y2z

51 Pmma 8 �12 ; 1
2 ;

1
2� 4jx; 2jy; 2jz 2x2y2z

52 Pnna 8 �12 ; 1
2 ;

1
2� 4jx; 4jy; 4jz 2x2y2z

53 Pmna 8 �12 ; 1
2 ;

1
2� 4jx; 2jy; 4jz 2x2y2z

54 Pcca 8 �12 ; 1
2 ;

1
2� 4jx; 2jy; 4jz 2x2y2z

55 Pbam 8 �12 ; 1
2 ;

1
2� 4jx; 4jy; 2jz 2x2y2z

56 Pccn 8 �12 ; 1
2 ;

1
2� 4jx; 4jy; 2jz 2x2y2z

57 Pbcm 8 �12 ; 1
2 ;

1
2� 2jx; 4jy; 4jz 2x2y2z

58 Pnnm 8 �12 ; 1
2 ;

1
2� 4jx; 4jy; 2jz 2x2y2z

59 Pmmn 8 �12 ; 1
2 ;

1
2� 2jx; 2jy; 2jz 2x2y2z

59 alt Pmmn2 8 �12 ; 1
2 ;

1
2� 4jx; 4jy; 2jz 2x2y2z

60 Pbcn 8 �12 ; 1
2 ;

1
2� 4jx; 2jy; 4jz 2x2y2z

61 Pbca 8 �12 ; 1
2 ;

1
2� 4jx; 4jy; 4jz 2x2y2z

62 Pnma 8 �12 ; 1
2 ;

1
2� 4jx; 4jy; 4jz 2x2y2z

75 P4 4 �12 ; 1
2 ; 0� 2jx; 2jy 2x2y

76 P41 4 �12 ; 1
2 ; 0� 2jx; 2jy; 4jz 2x2y

77 P42 4 �12 ; 1
2 ; 0� 2jx; 2jy; 2jz 2x2y

78 P43 4 �12 ; 1
2 ; 0� 2jx; 2jy; 4jz 2x2y

81 P�4 4 �12 ; 1
2 ; 0� 2jx; 2jy 2x2y

83 P4=m 8 �12 ; 1
2 ;

1
2� 2jx; 2jy; 2jz 2x2y2z

84 P42=m 8 �12 ; 1
2 ;

1
2� 2jx; 2jy; 2jz 2x2y2z

85 P4=n 8 �12 ; 1
2 ;

1
2� 2jx; 2jy; 2jz 2x2y2z

86 P42=n 8 �12 ; 1
2 ;

1
2� 2jx; 2jy; 4jz 2x2y2z

89 P422 8 �12 ; 1
2 ;

1
2� 2jx; 2jy; 2jz 2x2y2z

90 P4212 8 �12 ; 1
2 ;

1
2� 2jx; 2jy; 2jz 2x2y2z

91 P4122 8 �12 ; 1
2 ;

1
2� 2jx; 2jy; 8jz 2x2y2z

92 P41212 8 �12 ; 1
2 ;

1
2� 2jx; 2jy; 4jz 2x2y2z

93 P4222 8 �12 ; 1
2 ;

1
2� 2jx; 2jy; 4jz 2x2y2z

94 P42212 8 �12 ; 1
2 ;

1
2� 2jx; 2jy; 2jz 2x2y2z

94 alt P42212a 8 �12 ; 1
2 ;

1
2� 4jx; 4jy; 4jz 2x2y2z

95 P4322 8 �12 ; 1
2 ;

1
2� 2jx; 2jy; 8jz 2x2y2z

96 P43212 8 �12 ; 1
2 ;

1
2� 2jx; 2jy; 4jz 2x2y2z

115 P�4m2 8 �12 ; 1
2 ;

1
2� 2jx; 2jy; 2jz 2x2y2z

116 P�4c2 8 �12 ; 1
2 ;

1
2� 2jx; 2jy; 4jz 2x2y2z

117 P�4b2 8 �12 ; 1
2 ;

1
2� 2jx; 2jy; 2jz 2x2y2z

118 P�4n2 8 �12 ; 1
2 ;

1
2� 2jx; 2jy; 4jz 2x2y2z

143 P3 3 �23 ; 1
3 ; 0� 3jx; 3jy 3(x+y)

144 P31 3 �23 ; 1
3 ; 0� 3jx; 3jy; 3jz 3(x+y)

Table 1 (continued)

ITC No. Name jGj Vector ÿb Matrix A Algorithm.

145 P32 3 �23 ; 1
3 ; 0� 3jx; 3jy; 3jz 3(x+y)

149 P312 6 �23 ; 1
3 ;

1
2� 3jx; 3jy; 2jz 3(x+y) 2z

151 P3112 6 �23 ; 1
3 ;

1
2� 3jx; 3jy; 6jz 3(x+y) 2z

153 P3212 6 �23 ; 1
3 ;

1
2� 3jx; 3jy; 6jz 3(x+y) 2z

174 P�6 6 �23 ; 1
3 ;

1
2� 3jx; 3jy; 2jz 3(x+y) 2z

Name Vector ÿb Matrix A Algorithm

P3 �23 ; 1
3 ; 0� 3jx; 3jy 3(x+y)

Name Vector ÿb Matrix A Algorithm

P�6 �23 ; 1
3 ;

1
2� 3jx; 3jy; 2jz 3(x+y) 2z
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one. At the end of the Fourier transform, a reordering of data

(`bit reversal'), which is also a permutation, is needed anyway.

Since composition of two permutations is also a permutation,

the change of the asymmetric unit may easily be incorporated

into the bit reversal procedure causing no loss of ef®ciency.

Another possible source of problems is that the coordinate

system we used has its origin shifted with respect to the

traditional one. This shift is of no consequence to the appli-

cation of the FFT, except for the obvious requirement that

other modules use the same coordinate system. This may

cause incompatibilities with some existing programs.

However, conventions used in these programs have no

fundamental justi®cation and adjusting them should require

only minimal changes. Moreover, in paper IV (Rowicka et al.,

2003b), we will present conceptually more complex algorithms

that allow for a conventional choice of coordinate system (i.e.

with symmetry axes going through the origin).

The symmetry-reduction formula does not provide full

symmetry reduction for all space groups. Those that cannot be

solved by this method fall into one of three following cases.

First, the most obvious obstacle for application of this formula

is non-existence of a computational grid without points in

special positions. This applies, among others, to all cubic

groups. The algorithms for such cases will be presented in

paper IV. Second, the symmetry-reduction formula cannot be

also applied to centred lattices ± the asymmetric unit in such a

case cannot be described by a matrix A0, as in (10). These

cases, in which the symmetry-reduction formula leads to only

partial symmetry reduction, will be completely solved in paper

III (Rowicka et al., 2003a). The third class in which we cannot

apply our symmetry-reduction formula are groups containing

the symmetry operators like y; x; z� 1
2. Because of the trans-

lation along the z axis, they may have no points in special

positions, however, this does not make dealing with the

diagonal mirror operator y; x in the XY plane any easier.

Cases similar to this one will be covered also in paper IV.

APPENDIX A
Table of algorithms

Table 1 describes the algorithms for speci®c crystallographic

space groups. Each row starts with the ITC number and name

of the group (alternative description of the same group are

marked by alt). Following is the number of symmetry opera-

tors, denoted by jGj. It is approximately equal to the increase

in speed and reduction of memory usage achieved by using

our algorithms. Then we list the vectors ÿb and the matrix A

that de®ne the grid coordinate system by (16). For example,

the symbols 2jx; 2jy; 4jz given as a description of matrix A

should be understood as follows:

A �
2N 0 0

0 2M 0

0 0 4Q

24 35;
where N, M and Q are arbitrary positive integers (this is for

example the case of the Pccm group), and N � M for

tetragonal (for example for the P4222 group) or trigonal

groups.

There are various origins of requirements imposed on the

entries of matrix A. First, if our algorithm is to take every

second point along x, y and z axes, we want to make sure ®rst

that the number of points along these axes is even. This

requirement would lead to condition 2jx; 2jy; 2jz. Another

reason we impose additional conditions is that we want the

computational grid to be invariant under the action of

symmetry operators.

The last column contains a list of basic algorithms used.

Symbol explanation: 2x: regular subgrid consisting of every

second point along the x axis (a very similar 2z is mentioned in

x4.4). 2x2y: regular subgrid consisting of every second point

along x and y axes (discussed in x4.1, depicted in Fig. 4).

2x2y2z: regular subgrid consisting of every second point

along x, y and z axes (see x4.2 and Fig. 6). 3(x+y): subgrid of

x� y divisible by 3 (see x4.3 and Fig. 7).
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